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PREFACE 
The field of fractional calculus, though rooted in centuries-old mathematical inquiry, has only 
recently gained significant momentum across diverse scientific and engineering disciplines. The 
concept of extending differentiation and integration to non-integer (fractional) orders was once 
a theoretical curiosity, but it has now emerged as a powerful tool for modeling memory, 
hereditary systems, anomalous diffusion, and complex dynamical behaviors in real-world 
phenomena. 
This book, titled Understanding Fractional Calculus, aims to offer a clear, structured, and 
accessible introduction to this fascinating area of mathematical analysis. It is intended for 
students, researchers, and professionals who are curious about fractional calculus or are 
seeking to apply it within their respective fields. 
The book is organized into five carefully curated chapters: 
Chapter I: Introduction to Fractional Calculus 
This chapter provides the foundational motivation and historical background of fractional 
calculus. It introduces the basic definitions and outlines the evolution of the subject from pure 
mathematics to modern-day applications. 
Chapter II: Special Functions 
Fractional calculus is deeply interwoven with a wide class of special functions, such as the 
Gamma function, Mittag-Leffler function, and hypergeometric functions. This chapter explains 
these functions and their roles in defining and solving fractional differential equations. 
Chapter III: Different Approaches of Fractional Calculus 
Multiple definitions and perspectives exist within the fractional calculus community. This 
chapter explores various formalisms—including Riemann-Liouville, Caputo, and Grünwald-
Letnikov derivatives—highlighting their similarities, differences, and areas of application. 
Chapter IV: Extended Transforms and Fractional Differential Equations 
This chapter delves into how classical transforms, like the Laplace and Fourier transforms, are 
extended to handle fractional orders. It also discusses methods for solving fractional differential 
equations using these extended tools. 
Chapter V: Applications of Fractional Calculus 
To illustrate the practicality and versatility of fractional calculus, this chapter presents selected 
applications in physics, control theory, bioengineering, finance, and other fields. Real-world 
case studies demonstrate how fractional models provide a more accurate description of 
complex systems. 
Our goal in presenting this book is to demystify fractional calculus and encourage further 
exploration and research. Each chapter builds upon the previous one, providing a coherent and 
comprehensive journey through theory, tools, and applications. 
We hope that this book serves as a valuable resource for your learning, teaching, or research 
endeavors in fractional calculus and its many applications. 

Author 
. 
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CHAPTER - I 

INTRODUCTION TO FRACTIONAL CALCULUS 

 

1.1 Introduction: 

In general, generalization is overruled on restrictions. One such generalization in mathematics is 

fractional calculus. Thus fractional calculus is the generalization of ordinary/ classical calculus. 

Objectives of this chapter are to study origin of fractional calculus, to study historical 

development of fractional calculus right from beginning of field till to date. Also to make some 

conclusion on the studied part of chapter and at last, chapter wise summary of the thesis 

prescribed.  

 

1.2 Fractional Calculus: 

In mathematics generalization or extension of knowledge creates lots of research in the subject 

which is very useful for later development of mathematics as well as that particular topic/subject. 

One such very important generalization of classical calculus is the fractional calculus. It may 

worth to say fractional calculus is the interpolation of classical calculus. 

So, fractional calculus is the extension or generalization of traditional calculus that is fractional 

calculus is the derivative and integration of arbitrary order rational, irrational or complex. 

Actually work on fractional calculus begins very close with the beginning of work on traditional 

calculus. Physical and geometrical interpretation of traditional calculus gives rise in its fast 

development where as inability to represent physical and geometrical interpretation of fractional 

calculus results in very slow development. In 17th century traditional calculus begins and spreads 

very fast with its application where as fractional calculus though it begins very close traditional 

calculus in 17th century negligible development found up to the 20th century. In last two to three 

decades we found some notable development of fractional calculus. 

 While developing the study of classical calculus i.e. differential calculus and integral calculus 

question may arise that ‘what will be fractional order derivative and fractional order integrals?’ 

but the written proof to this question was found in communication letters between great 

mathematicians Guillaume L’Hôpital and Gottfried Leibniz on 30th September 1695. Answer 

given by great mathematician Gottfried Leibniz on 30th September 1695 to the question raised by 

another great mathematician Guillaume L’Hôpital through letter to the question “What will be 
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the meaning of   , if n=1/2?” as “This is an apparent paradox from which one day a 

useful consequence will be drawn”. After 30th September 1695 mathematicians who are 

working on classical calculus with special case of differentiation and integration of arbitrary 

order named the field as Fractional calculus.  

Thereafter, Lacorix, L’Hôpital, Holmgren, Euler, Letnikov, Grünwald, Lagrange, Krug, Laplace, 

Riemann, Liouville, Heaviside, Lourant, Hadamard, Hardy, Littlewood, Weyl, Erdelyi, Kober, 

Widder, Osier, Sneddon, Mikolas, Al-Bassam worked and developed the basic concepts of 

fractional calculus.  

The basic and theoretical investigation was first carried out by Laplace in 1812  defined 

fractional derivative in terms of integral, in 1819 Lacorix determine the derivative of arbitrary 

order and generalize it, in 1822 Fourier defined fractional order derivative in terms of integral 

representation. After Fourier, Liouville (1832a) where defined the first outcast of an operator of 

fractional integration. Then Swedish mathematician Holmgren (1864), Euler (1865) took the first 

step in the study of fractional integration. Today there exist many different forms of fractional 

derivative and fractional integral operators. The Riemann-Liouville operator is the most 

frequently used usually for fractional integration. Caputo, in the year 1967, defined a useful 

formula to obtain fractional derivative of a function.  

 More than 300 years the appearance of the fractional integration and differentiation 

concepts/ideas act as a theoretical since there were unavailability of geometrical and physical 

interpretation of these concepts/ideas. 

F.Ben Adda, has suggested a different approach to geometrical interpretation of fractional 

integration and fractional differentiation, based on the idea of the contact of αth (non-integer) 

order. However, without visualization it is difficult to speak about an acceptable geometrical 

interpretation. I. Podlubny in the year 2002 represented the geometrical interpretation of the 

integral and the fractional integral. Like other mathematical concepts, the development of 

fractional calculus has passed through various disagreements, inaccuracies, farces, etc. That 

sometimes made mathematicians distrusting in the general concept of fractional operators. 

Development in application of fractional calculus was first discovered by Neils Henrik Abel in 

1923, he applied fractional calculus to solve the problem in physics for finding tautochrone curve 

(tautochrone curve is the problem of finding shape of curve for frictionless point mass particle in 

time decent under the uniform gravitational force is independent of starting point). 
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Applications of fractional calculus are found in various diversified fields of science and 

engineering, such as diffusion, anomalous diffusion, fluid flow, relaxation, oscillation, rheology, 

reaction-diffusion, turbulence, diffusive transport akin to diffusion, electric networks, polymer 

physics, chemical physics, electro chemistry of corrosion, Economics, relaxation processes in 

complex systems, biological sciences, signal processing, biophysics, polymers, statistical 

mechanics, statistics, probability, transport theory, control theory, Electrical circuit, elasticity, 

potential energy and others. 

 

1.3 Historical Development of Fractional Calculus: 

Though the work on fractional calculus begins very close to the beginning of work on traditional 

calculus but the actual proof found in communication letter between the great mathematicians 

Gottfried Leibniz and Guillaume L’Hôpital on 30th September 1695. This date 30th September 

1695 therefore treated as birth date of Fractional Calculus. The concept of communication was 

the question “what will be the meaning of a derivative of integer order dny/dxn when n becomes 

fraction?” as it is found affirmative after long duration of existence of problem then again 

question arrives on n that “Whether n becomes rational, irrational or complex?” as it answered 

affirmatively again after long duration, hence the name Fractional Calculus misnomer. Fractional 

calculus can also be referred as differentiation and integration of arbitrary order, also be referred 

as generalization of traditional calculus.  However in 1738 Euler’s question in this regard as dn 

can be found by successive (continued) differentiation if n is positive integer then how and what 

will be found if n becomes fractional?  

In 1819 first written work appears concerned with fractional calculus in a text by S. F. Lacroix  

where he develops a formula for factional derivative of function y = xm , m a positive integer. 

   

    

         ………… 

                                 …………. 

   ,  n ≤ m. 

This can be written in factorial notation as 
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                                                                        (1) 

Replacing factorial notation by Legendre’s symbol (Gamma function) Lacroix obtained 

                                                            (2) 

 Using this formula he obtained one half derivative of the function y= x, in 

equation (1.3.2) put m= 1 and n= ½ we have 

  

  

                                                                                          (3) 

Thus one half derivative of x was obtained. 

In 1848 William Centre evaluated fractional derivative of constant using Lacroix definition 

where he takes zero power of x so that x0=1 a constant then 

                                                              (4) 

Which shows one half derivative of constant is other than zero which does not satisfy traditional 

property of derivative because of such lacunas (as per traditional derivative) study on fractional 

calculus progressed slowly. The method of Lacroix using linearity of fractional derivatives is 

applicable to any analytic function by term wise differentiation of its power series expansion. In 

order for the method to be considered general, this class of functions is too narrow has very 

limited scope. 

Next to S. F. Lacroix, Joseph B. J. Fourier in 1822 evaluated derivatives of fractional order or 

arbitrary order. He obtained definition of fractional calculus from integral representation of 

function f(x) as 

                                                       (5) 

Now for an integer n 
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By replacing n with α arbitrary any quantity positive or negative, He obtained definition for 

fractional evaluation 

        (6) 

Contribution to theoretical development of fractional calculus also given by Euler, Leibniz, 

Laplace, P. Kelland, Greer etc 

 Simultaneously with these initial theoretical developments, first practical applications of 

fractional calculus found or discovered by Niels Henrik Abel in 1823. Abel considered the 

solution of the integral equation related to the tautochrone problem (tautochrone is the problem 

of finding shape of curve for frictionless point mass particle in time decent under the uniform 

gravitational force is independent of starting point). If the time of slide is a known constant k he 

found the solution via an integral equation given by 

                                         (7) 

This integral is a particular case of definite integral which defines fractional integral of order 1/2, 

and written as 

                                            (8) 

and applied one half derivative 

                                              (9) 

Thus after evaluating one half derivative of k required function f(x) obtained. This is an great 

success in the field of fractional calculus by Abel.  Again we come to mathematical controversy 

that fractional derivative of a constant is not always zero. 

Results obtained by S. F. Lacroix, Joseph B. J. Fourier, Niels Henrik Abel  etc attracted many 

mathematicians towards fractional calculus.  

In 1832 Joseph Liouville, who made the first major study of fractional calculus,[8]. He began to 

study fractional calculus to apply his results to problems in potential theory. Joseph Liouville 

began his theoretical development using the result for derivatives of integer order n        

                                                          (10) 

This equation (1.3.5) easily generalized for arbitrary order α as     

                                                             (11) 
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He applied this result of arbitrary derivative of exponential function f(x) to the series given by 

  ,   Re                                       (12) 

 As 

                                                  (13) 

Where arbitrary order  is any number rational, irrational or complex this is Liouville’s first 

formula for fractional calculus. As it is used only for particular type of function so it has such 

disadvantage, again he work on the topic and obtained second formula, for which he begins with 

definite integral correspond to gamma function 

                                                 a > 0, x > 0                       (14) 

On substituting xt = u, obtain  

      

   

  

Then by applying operator  

   

   

  ,          a > 0                                          (15) 

Equation (15) is the second formula discovered by Liouville which were too narrow as like first, 

both formulas are used only for particular type of functions. First is used for the function in (12) 

and second one used only for function of type  with a > 0. All the previous definitions are not 

suitable for a general definition of fractional derivative. Many mathematicians worked on and 

emerged similar type of formulas. As like above formulas H. R. Greer developed to find 

fractional derivative of trigonometric functions. In this study of fractional calculus in some 

extent mathematicians obtained result but including them self no one satisfied fully, which is the 

reason progress in the development of fractional calculus found very slow. Though the two 

definitions derived by Liouville in account of fractional calculus which has limited scope in the 

field then also he does not leave the field but go on working and again one more diamond 

included in his favor that he is the first to attempt to solve differential equation having fractional 

order differentials. In 1833 George Peacock, in 1839, S.S. Greatheed and many more 
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mathematicians also worked on fractional differential equations. George Peacock supported 

Lacroix’s version and erroneous in many points remark placed on Liouville’s version. In 1839 

and1846 P. Kelland published two works and supported Liouville’s version. In 1840 Augustus 

De Morgan denies to support both the versions of Lacroix and Liouville. 

In student days G. F. Bernhard Riemann works on fractional calculus. He developed theory of 

fractional integration which was published later in 1892. Riemann generalizes Taylor series and 

obtained the formula in fractional integral form as 

                                   (16) 

Where c and x are limits of integration and 𝜙(x) is a complementary function. 

In 1880 A. Cayley makes a comment on Riemann’s equation in (16) related to difficulty in 

equation concerned with complementary function containing infinity of arbitrary constants. 

At the end of nineteenth century due to erroneous versions of definition of fractional calculus 

there was long duration dispute between mathematicians which definition Lacroix-Peacock or 

Liouville to be used or correct. Riemann also entangled in his version due to complementary 

function. Due to such situation mathematicians in that period on theory of fractional operator had 

a general distrust.  

Generalized Leibniz’s nth derivative of a product found in many modern applications B. Ross 

1975. Liouville and after some years C. J. Hargreave worked on generalization of Leibniz 

product rule.  

 

                                     (17) 

Where   the generalized binomial coefficient given by 

 

    In 1858 H. R. Greer [11] worked on finite differences of fractional operator which is again 

improved by W. Zachartchenxo in 1861. In 1868 monograph on application of fractional 

calculus to the solution of ordinary differential equation given by H. Holmgren where in 

introduction part  he declare that the work of  Liouville and Spitzer were too restrictive and his 

aim is to find complete solution without any restrictions.     
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Support on development to fractional calculus also given by N. Ya. Sonin, his work begins with 

cauchy’s integral formula and work is entitled by “On differentiation with arbitrary index”. A. V. 

Letnikov gives extension to N. Ya. Sonin’s works, wrote four papers on the topic . Both are tried 

to generalize the nth derivative of cauchy’s integral formula in which by factorial of an arbitrary 

number can be generalized easily by factorial gamma function but integrand of formula unable to 

evaluate if n is arbitrary and hence both of them unable to get complete success in achievement 

of target. In 1884 H. Laurent [9] worked on same topic i.e. to generalize cauchy’s integral 

formula where his considered contour was an open circuit on a Riemann surface where as N. Ya. 

Sonin and A.V. Letnikov considered counter was a closed circuit. These methods of contour 

integration developed the definition for arbitrary order. 

                           Re α > 0                            (18)                   

Riemann definition (1.3.16) without complementary function coincides with this definition when 

x > c. Here if c=0 then the definition is referred as Riemann-Liouville fractional integral a widely 

used version of fractional calculus given by 

            Re α > 0                                   (19) 

In 1888 P. A. Nekrassov In 1890 A. Krug and in 1917 Weyl also derived the formula from 

cauchy’s integral formula. 

In the last decade of the nineteenth century Oliver Heaviside showed how certain linear 

differential equation solved using generalized operators by publishing number of papers. He is 

unable to justify his procedure though the results were correct. After long time, his procedure 

was justified by T. J. Bromwich in 1919. Work on theoretical development as well as application 

on fractional calculus was widely spread in the last three decades. 

Parallel to theoretical development of fractional calculus development in its application also 

grows in different field of education. In last three to four decades we find numerous applications 

in all most all fields.   Due to non-locality of fractional calculus, in many respects fractional 

calculus differs from the ordinary calculus. The chain rule and product rule take difficult form in 

case of fractional calculus. Like ordinary calculus, the fractional calculus does not have physical 

and geometrical meaning, though some hard slog has been made in this track recently. 

Additionally there are several different definitions of fractional calculus are found throughout the 
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literature. Hence many mathematicians were distrustful and many mathematicians though they 

confuse then also they continued their work in the field. 

During the last two decade Fractional Calculus has been applied to almost every field of 

Mathematics, Science and Engineering. It is now become conscious that the non-locality is not a 

negative aspect but it leads fractional calculus to model many natural occurrence containing long 

memory. Examples of such uncharacteristic systems are plentiful in nature. We list few of them: 

network traffic, cellular diffusion processes, dynamics of viscoelastic materials, atmospheric 

diffusion of pollution etc. All such systems have non-local dynamics involving long memory 

which cannot be reproduced using ordinary calculus. In fact ordinary calculus models the ideal 

behavior and Fractional calculus models the real behavior. Therefore fractional differential 

equations are helpful for the modeling of many asymmetrical phenomena in nature and in 

multifaceted systems.  

Development of Fractional calculus has found intensively from 1974 when the first international 

conference especially in the field of fractional calculus took place at the University from New 

Haven, Connecticut in 1974. Which was organized by Bertram Ross  approximately 94 

mathematicians contributed in the conference and its proceeding contains 26 papers on the topic 

at the time. Second international conference on fractional calculus was conducted by Adam Mc 

Bride and Garry Roach at University of Strathclyde, Glasgow, Scotland in 1984. Third 

international conference especially on fractional calculus was took place at Nihon University, 

Tokyo, Japan in 1989 by Katsuyuki Nishimoto. Fourth international conference organized by 

Peter Rusev, Ivan Dimovski and Virginia Kiryakova at Varna, Bulgaria  in 1996. After 1996 

number international workshops, symposium was held on fractional calculus, special functions 

and its applications. In 23-25 June 2014 next international conference held especially on 

fractional calculus and its applications at Catania in Italy.  The special session “Fractional 

Calculus: Quo Vadimus? (Where are we going?)” was proposed and reviewed by F. Mainardi.  

The idea to have open sessions and discussions on Open problems in fractional calculus was 

realized from the first conference chaired by the late Professor B. Ross (one of the pioneers of 

fractional calculus in the contemporary era). Such open problems sessions took places also in the 

next international conferences on fractional calculus. 
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CHAPTER -II 

SPECIAL FUNCTIONS 

 

2.1 Introduction 

Special functions plays very crucial role in the development of fractional calculus. There are lots 

of special functions available in literature among them many special functions are related with 

fractional calculus, for solving problems consisting of fractional operators and fractional 

differential equations. Again from these related special functions only those which are closely 

associated with fractional calculus are studied. 

 Objectives of this chapter are to study some special functions & there properties in concern with 

fractional calculus. After Introduction section 2.1, section 2.2 we take an overlook about special 

functions and its progress. Section 2.3 deals in detail with gamma function, its properties and 

application also we study extended gamma functions. In next section 2.4 overview of beta 

function its properties, applications and extended form given thoroughly. Section 2.5 contains 

Mittag Leffler function of one parameter, two parameter and multi parameter with its properties 

and applications. Conclusion of chapter 2 was given in section 2.7.   

 

2.2 Special Functions:   

Special functions are a real or complex valued functions of one or more real or complex 

variables which are defined in such a way that its numerical values be obtained, evaluated or 

tabulated. We know simple functions like logarithmic function log(x); algebraic functions , 

trigonometric functions sin(x), tan(x), exponential function  are belongs to the category of 

elementary functions. Higher functions both transcendental and algebraic come under the 

grouping of special functions. The study of special functions grew up with the calculus and it is 

therefore one of the oldest branches of analysis. It majorly developed in the nineteenth century as 

part of the theory of complex variables. 

In the second half of the twentieth century it has acknowledged a new impetus from a relation 

with Lie groups and a relation with averages of elementary functions. The history of special 

functions is closely tied to the problem of terrestrial and celestial mechanics that were work out 

in the eighteenth and nineteenth centuries, the boundary-value problems of electromagnetism and 

heat in the nineteenth, and the eigen value problems of quantum mechanics in the twentieth. 
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Seventeenth-century England was the hometown of special functions. John Wallis at Oxford 

took first stepladder towards the theory of the gamma function long before Euler arrived at it.  

Wallis had also the first come crossways with elliptic integrals while using Cavalieri's primitive 

predecessor of the calculus. A more refined calculus, which made promising the real flowering 

of special functions, was urbanized by Newton at Cambridge and by Leibnitz in Germany at 

some point in the period 1665-1685. Taylor's theorem was establish by Scottish mathematician 

Gregory in 1670, even though it was not available until 1715 after rediscovery by Taylor. In 

1703 James Bernoulli solved a differential equation by an infinite series which would now be 

called the series representation of a Bessel function. 

Even though Bessel functions were met by Euler and others in a variety of mechanics problems, 

no methodical study of the functions was completed until 1824, and the most significant 

achievements in the eighteenth century were the gamma function and the assumption of elliptic 

integrals. Euler establishes most of the major properties of the gamma functions around 1730. In 

1772 Euler expected the Beta-function integral in stipulations of the gamma function. Only the 

duplication and multiplication theorems stay at the back to be discovered by Legendre and 

Gauss, respectively, early in the next century. Other significant developments were the discovery 

of Vandermonde's theorem in 1772 and the definition of Legendre polynomials and the 

discovery of their addition theorem by Laplace and during 1782-1785 by Legendre. 

The fair-haired age of special functions, which was centered in nineteenth century German and 

France, was the result of developments in both mathematics and physics: the theory of analytic 

functions of a complex variable on one hand, and on the other hand, the field theories of physics 

(e.g. heat and electromagnetism) which requisite solutions of partial differential equations 

containing the Laplacian operator. The discovery of elliptic functions (the inverse of elliptic 

integrals) and their property of double periodicity were published by Abel in 1827. Elliptic 

functions grew up in symbiosis with the general theory of analytic functions and flourished 

throughout the nineteenth century by Jacobi and Weierstrass especially.  

A further major development was the theory of hyper geometric series which set in motion in a 

systematic way with Gauss's memoir on the 2F1 series in 1812, a memoir which was a landmark 

also on the path towards rigor in mathematics. The 3F2 series was considered by Clausen (1828) 

and the iFi series by Kummer (1836). The functions which Bessel considered in his memoir of 
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1824 are oFi series; Bessel started from a problem in orbital mechanics, but the functions have 

found a place in every branch of mathematical physics.  

The subject was considered to be branch of pure mathematics up to 1900, applied mathematics 

around 1950. In physical science special functions gained supplementary importance as solutions 

of the Schrodinger equation of quantum mechanics, but there were important developments of a 

purely mathematical nature also. In 1907 Barnes used gamma function to develop a new theory 

of Gauss's hyper geometric functions 2F1. Various generalizations of 2F1 were introduced by 

Horn, Kampe de Feriet, MacRobert, and Meijer.  

 

2.3 Gamma Function: 

Swiss mathematician Leonhard Euler (1707 – 1783) invented the gamma function. Gamma 

function is most frequently related with fractional calculus. The gamma function belongs to the 

special transcendental function category. In the integer-order calculus the factorial plays an 

important role because it is one of the most fundamental combinatorial tools. At the heart of the 

theory of special functions lies the Gamma function, in that nearly almost all of the classical 

special functions can be evaluated by this powerful function. Gamma functions have explicit 

series and integral functional representations, and thus provide ideal tools for establishing useful 

products and transformation formulae. In addition, applied problems frequently require solutions 

of a function in terms of parameters, rather than merely in terms of a variable, and such a 

solution is perfectly provided for by the parametric nature of the Gamma function. As a result, 

the Gamma function can be used to evaluate physical problems in diverse areas of applied 

mathematics. While the Gamma function's original intent was to model and interpolate the 

factorial function, mathematicians have discovered and developed many other interesting 

applications thus playing a particularly useful role in applied mathematics. Equations involving 

Gamma functions are of great interest to mathematicians and scientists, and newly proven 

identities for these functions helpful in finding solutions for many differential and integral 

equations. There exist a vast number of such identities, representations and transformations for 

the Gamma function, the comprehensive text providing over 400 integral and series 

representations for these functions. Gamma functions thus provide a rich field for ongoing 

research, which continues to produce new results. In 1959, in, It was stated that “of the so-called 

‘higher mathematical functions’, the Gamma function is undoubtedly the most fundamental”. For 
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instance the rising factorial provides a direct link between the Gamma and hyper-geometric 

functions, and most hyper-geometric identities can be more elegantly expressed in terms of the 

Gamma function. In, it is stated clearly that, “the Gamma function and beta integrals are essential 

to understanding hyper-geometric functions.” It is thus enlightening and rewarding to explore the 

various representations and relations of the Gamma function. The Gamma function has the same 

importance in the fractional-order calculus and it is basically given in the form of integral. The 

definitions, properties and well known examples of the Special Functions can be found in [8]. 

Euler’s integral of second kind i.e. Euler’s Gamma function, for z є C \ {0, -1, -2, -3 …} in 

integral form be defined as  

                                            (2.3.1) 

        Limit form of Gamma function is obtained by substituting 

    

 And then applying n times integration by part we get 

                  (2.3.2) 

And in product form it is defined as 

                                             (2.3.3) 

Properties of Gamma function: 

Theorem (2.3.1): ( Recurrence Formula ) For any z є C \ {0, -1, -2, -3 …} prove that 

   ( z + 1 ) = z 𝛤( z ) 

Proof: We know 

   

 Integration by parts 

   

    

   

Hence, ( z + 1 ) = z 𝛤( z ). 
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Theorem (2.3.2): For n = 1, 2, 3, ……  prove that 𝛤( n + 1 ) = n!. 

Proof: We know 

   

 Put n = 1, we get 

   

   

  (1) =  = 1 

Now, using theorem (2.2.1) for n=2 we have 

           (2) = 𝛤( 1 + 1) = 1 𝛤( 1 ) = 1.1= 1 

For n = 3,    

   (3) = 𝛤( 2 + 1) = 2. (2) = 2.1 = 2 = 2! 

Similarly n = 4, 

 (4) = 𝛤(3 + 1) = 3.𝛤(3) = 3. 2! = 3! 

Hence in general (n + 1) = n!. 

 

Theorem (2.3.3): Gamma function is contineous at all positive real numbers. 

Proof: Using Weierstrass M- test we get result. 

Graph of gamma function for real values -5 ≤ x ≤ 5 shown in figure 2.3.1 

  

           

 

 

 

 

 

 

 

 

 

Figure 2.3.1 graph of gamma function 
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Theorem (2.3.4): If x is any positive real number then prove that  

   . 

Proof: We know 

   

   

 The integral  is an improper integral and can be evaluated as 

   

 

 Therefore     , for x > 0 and  

Hence   

  

Theorem (2.3.5): Prove that,    

Proof: We will prove this by considering the region as shown in figure 2.3.2 

From figure required region is given by set as 

              S = {(x, y) | 0 ≤ x ≤ R, 0 ≤ y ≤ R} 

And consider C1= { (x, y)| x ≥ 0, y ≥ 0, } 

          C2= { (x, y)| x ≥ 0, y ≥ 0, } 

It is obvious that C1  S ⊂ C2 

Therefore   

As region of boundry integrals is circular and middle integral is reactangular therefor by polar 

coordinates, we have 

  

  

 

Letting limit as R  , we get 
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Hence     . 

 

Figure 2.3.2 

Theorem (2.3.5): Prove that,    

Proof: put   in the equation (2.2.1) 

             

 Put  

  

         

     ( by theorem 2.3.4) 

Theorem (2.3.6): Prove that,    

Proof:           definition (2.3.2) 

  

 Replacing z by -z 
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 R.H.S. is the famous weierstrass product, therefore we get 

  

   Hence, 

                                                                   (2.3.4) 

                                                                      

Theorem (2.3.7): ( Reflaction Formula ) Prove that, 

    

Proof:     we know by previous theorem 

   

  

             Hence                                                       (2.3.5)               

Note: In reflection property equation (2.3.5) if we put  , we have 

          

  

  Hence     

Some standard values of gamma function are given in table 2.3.1 

 

 

 Table 2.3.1: Some standard values of gamma function 

 

x  x  
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Definition of some other functions: 

I) Incomplete gamma function: 

 Gamma function can be written as 

  

            Where   is called incomplete gamma function and   is called its 

complement (Prym’s function ) and are defined as 

                  x > 0 

and            x > 0 

Special values of incomplete gamma function and its complement for integers z = n 𝜖 𝙽 

                        n= 0, 1, 2, ….. 

                                    n= 0, 1, 2, …… 

 

II) Reciprocal of gamma function: 

The reciprocal Gamma function occurs in many formulas which is defined for all complex 

numbers z its definition is given in equation (2.3.6) and also graph for its real values is shown in 

figure 2.3.3. 

                                              (2.3.6) 



ISBN: 978-93-5833-448-7 Lambert Publication’s 

 

Understanding Fractional Calculus Page 21 
 
 

 

Figure 2.3.3  Reciprocal of gamma function 

 

III) Error Function: 

The error function of x is denoted by erf(x), x may be real or complex defined as  

  

          Some special values:  

          1) erf(0) = 0                           3) erf(x) + erfc(x) = 1 

          2) erf(-x) = -erf(x)               4) erf(∞) = 1 

 

IV) Complementry Error Function: 

 The complementry error function of x is denoted by erfc(x), x may be real  or 

complex, figure 2.2.2 is the graph of function and is defined as   
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 Some special values:  

            1)  (0) = 1                                     5)   

            2)  (-∞) = 2          6)   

          3)  (+∞) = 0                       7) erf(x) + erfc(x) = 1 

           4)  (-x) = 2 -  (x) 

 

 

Figure 2.2.2: Graph of complementry error function 

 

2.4 Beta Function: 

Beta function is a two variable function which is related with gamma function and widely useful 

in different field, mostly used in solving definite integral, Euler’s integral of first kind i.e. Beta 

function is defined as 

                    (2.4.1) 

Properties of Beta function: 

Theorem (2.4.1): Prove that,    

Proof: Consider 

   

  

          Let t = u + v ,  v = t – u   
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 Put  ,  u = ts means du = t ds 

  

          

  

             .                                                                   (2.4.2)  

Theorem (2.4.2): Prove that beta function is symmetric i.e. prove that 

   (x, y) =  (y, x) 

Proof:       

        

  

 .   (2.4.3) 

 Theorem (2.4.3): Prove that     

           

Proof:   

      Substitute  

  

                                    (2.4.4) 

Theorem (2.4.4): Prove that   

 

Proof: Consider 

   

  

 Substitute u= s2 and v=t2 
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On changing to polar coordinate 

  

  

  

                           (2.4.5) 

Theorem (2.4.3): Prove that     

   

                                                                        

Proof:   

      Substitute  

  

  

Hence      

                                                                        

Some standard values of Beta function:  

x, y  (x,  y) x, y  (x,  y) 

    

  
  

  m, n 
 

         

                       Table 2.4.1:  Special Values of Beta function 
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Figure 2.4.1:  Graph of Beta function 

Incomplete Beta function: 

     Incomplete beta function is defined as 

     0 ≤ α ≤ 1                       (2.4.5)  

     Normalized or regularized form of incomplete beta function is defined as 

                                                                                         (2.4.6) 

 

2.5 Mittag-Leffler function (MLF): 

Mittag-Leffler function is the generalization of exponential function, which plays very important 

role in fractional calculus and fractional modeling. It is important to note that the role of the 

Mittag-Leffler function as the queen function of fractional calculus. The importance and 

popularity of the Mittag-Leffler function was found when its uses to fractional calculus and its 

applications were fully understood. Different aspects of this function in fractional theory and its 

applications/ modeling in fractional calculus have been described. One parameter Mittag-Leffler 

function was introduced by Gösta Magnus Mittag-Leffler as  
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                                    (2.5.1) 

  Two parameter Mittag-Leffler function is defined as 

                   (2.5.2) 

 Three parameter Mittag-Leffler function is defined as  

                    (2.5.3)  

    where  

   , called Pocchamber symbol. 

Equation (2.5.2) is the generalization of equation (2.5.1) which is introduced and was studied by 

A. Wiman in 1905, also studied by Humbert and R.P.Agrawal in 1953. For  MLF of two 

parameter is reduces to MLF of one parameter. Equation (2.5.3) is an again extension to Mittag-

Leffler function of one and two parameter which is introduced by Prabhakar, when 𝛾 =1 MLF of 

three parameter reduces to MLF of two parameter and when 𝛾 = 1, 𝛽 = 1 MLF of three parameter 

reduces to MLF of one parameter. 

Three parameter Mittag-Leffler function of another type also introduced by Kilbas and Saigo, to 

solve particular type of fractional differential equation. Both these three parameter form of 

Mittag Leffler function are used as an explicit representation of solutions to fractional 

differential equations and fractional integral equations. Shukla and Prajapati was given further 

generalization of Prabhakar’s function (2.5.3) and Saxena and Nishimoto was combined with the 

definition given by Shukla and Prajapati  with the definition of three parameter given by Kilbas 

and Saigo. 

 Further generalizations of the Mittag-Leffler function (multi-parametric Mittag-Leffler 

functions) were proposed, some of such generalizations was discussed in. Mittag Leffler 

functions of one, two and three  parameter are the basic versions and are used to generate multi-

parametric Mittag Leffler functions. Fractional operators and the Mittag-Leffler function are 

widely used in many sections of science and engineering and other applied sciences. In the last 

one to two decades this function has come into prominence, due to the huge potential of its 

applications in solving the problems of biological, physical engineering, chemical, economical 

and earth sciences etc.  
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 Some special values of one parameter MLF : 

1)                                                   (2.5.4) 

2)                                                        (2.5.5) 

3)     ,    z 𝜖 C                    (2.5.6) 

4)                            (2.5.7) 

 Properties of Mittag Leffler function: 

Theorem (2.5.1): Prove that  

                                                   (2.5.8) 

Proof: Consider 

  

  

        

   ,             R(𝛽) > 0. 

Theorem (2.5.2): Prove that  

                           (2.5.9)  

Proof: Consider R.H.S. of equation (2.5.5) 
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Theorem (2.5.3): Prove that  

 ,                                               (2.5.10) 

           where R(𝛽 – r) > 0,  r = 0,1,2,…. 

Proof: Consider L.H.S. of equation (2.5.10) 

  

   

           ,     R(𝛽 – r) > 0 

   

   = R.H.S. 

 

 Theorem (2.5.4): Prove that  

 ,  m=1, 2, 3..                           (2.5.11) 

Proof: Consider first m=1 

                   

 For m = 2,  

  

  

For m = 3,  

  

  

Hence for any m = 1, 2, 3… 

   

          Some Special values of Mittag-Leffler function are given in table 3.5.1: 

α  α, β  
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0 , |z| < 1 2, 1  

1  2, 2 
 

2  1/2, 1  

     

Table 3.5.1: Special Values of Mittag-Leffler function 

 

2.6 The Mellin-Ross Function: 

The Mellin-Ross function   closely related to Mittag-Leffler function, incomplete gamma  

etc it supports in finding fractional integral of exponential functions and related functions. It is 

definied as 

                                       (2.6.1) 

    Where  is incomplete gamma function. It can also be written as 

               (2.6.2) 

2.7 Conclusion: 

Special functions are the backbons of fractional calculus, without special function there should 

not be the birth of fractional calculus. Whateve may be the development found in fractional 

calculus its only due to special functions. Gamma function is the son of fractional calculus and 

Mittag-Leffler function is the life partner of fractional calculus. Growth in development of 

special functions means growth in developments of fractional calculus.  
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CHAPTER -III 

DIFFERENT APPROACHES OF FRACTIONAL CALCULUS 

 

3.1 Fractional Calculus: 

Fractional calculus was for the most part a study held in reserve for the best minds in 

mathematics except some few mathematicians many are dabbled with fractional calculus and the 

mathematical consequences. Many are using their own definition, notation, concept and 

methodology. The most popularized of these definitions are the Grünwald-Letnikov, Riemann-

Liouville and Caputo definition.  Numerous applications of fractional calculus have been found. 

However, these applications and the mathematical background surrounding fractional calculus 

are far from paradoxical, while the physical meaning is very difficult (possibly impossible) to 

grasp. Here we study development and properties of some famous approaches of fractional 

calculus.   

 

3.2 Grünwald-Letnikov Definition: 

Anton Karl Grünwald proposed the Grünwald definition of differintegrals  in 1867 at Prague.  

Same type of definition was also given by Aleksey Vasilievich Letnikov in 1868 at Moscow. 

Hence this definition is sometimes known as the Grünwald -Letnikov definition [3,5]. 

Grünwald –Letnikov approach achieved by successive differentiation. It begins by first order 

derivative of function y=f(x), given by 

  

  

 

 

Continuing the successive differentiation nth order derivative can be written as 

            (3.2.1) 

Where  is binomial coefficient and 
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  To generalize this expression for non-integer values of n=α 𝜖 R, we get understood with 

the binomial coefficient using the Gamma Function in place of the standard factorial. But, for the 

upper limit of the summation n goes to infinity as   with a < x (where x and a are the upper 

and lower limits of differentiation, respectively. With these changes equation for Grünwald –

Letnikov fractional derivative becomes 

   

      

           (3.2.2) 

Equation (3.7.2) represents definition of Grünwald–Letnikov for fractional differentiation.  

   To get Grünwald–Letnikov fractional integral approach, alter GL definition of fractional 

differentiation with negative α. For negative α binomial coefficient in equation (3.7.1) becomes 

  

 

  

  

  

          Using Gamma function this factorial expression can be written for n =α 𝜖 R as 

  

Therefore fractional integral of Grünwald–Letnikov becomes 

                     (3.2.3) 

Limits vanishes with integer order derivatives therefore in fractional derivatives limits must be 

considered This also means that fractional derivatives are nonlocal, which may be the reason that 

makes this kind of derivatives less useful in describing nature.  

Examples: 

I) Evaluate  , for α = ½ and f(x) = 1, a constant. 
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From the results in (page no. 20 [21]), we have 

 ,  

  

 

3.3 Riemann-Liouville Definition: 

The most commonly used definition of a fractional differintegral  was proposed by Riemann and 

Liouville. The Riemann-Liouville definition allows for the calculation of a differintegral of any 

real order. Like Grünwald–Letnikov approach to fractional calculus begins with successive 

differentiation, Riemann-Liouville approach to fractional calculus begins with n-fold integrals. 

For evaluating such n-fold integrals, Cauchy’s integral formula was used. Consider an integral 

     

  

  

  

  

 Similarly applying procedure    

    

In general                                      (3.3.1) 

 Hence its generalization to arbitrary (non-integer) values is  

                                     (3.3.2) 

In limit form it can be written as 

                                   (3.3.3) 

 This form is not valid if the real part of α is positive or zero since the integral diverges 

and in this case it can be used for evaluating generalized integrals. Equation (2.8.3) to become 

valid using ordinary derivative, we may write it as 

            (3.3.4) 
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Riemann-Liouville Fractional integral:  

Thus in general Riemann-Liouville Fractional integral of order α > 0 of the function f(x) is 

defined as 

                                                (3.3.5) 

Left hand and Right hand Riemann-Liouville Fractional integral are defined as 

                                    (3.3.6)             

                                     (3.3.7)   

Examples: 

I) Evaluate    , where  

         

  

  

 On substituting  

  

  

  

                                                                 (3.3.5.1) 

           Note: For the result (2.3.5.1) we see some particular examples 

i) For α = α and  , where C is constant 

 ,     where C is a constant.  

ii) For α = 1/2 and   

  

iii) For α = 3/2 and   

  

iv) For α = 1/2 and   
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v) For α = 3/2 and   

  

vi) For α = 1/2 and   

  

vii) For α = 3/2 and   

viii)   

From above examples one may take for granted that it is easy to assess fractional integral, but 

which is not fact since evaluating fractional integrals of some other elementary basic functions 

(such as trigonometric, exponential, logarithmic etc.) results in higher transcendental functions 

then what about others ?  

II) Evaluate    , where a is constant,   

By definition 

                                                  (3.3.5.2) 

  Let y = x – r   then  

  

This is not an elementary function therefore we need some special function having solution to 

such integrals. This can be evaluated by Millen-Ross function as    

       

III) Evaluate    ,  where a is constant,   

      

  Let y = x – r   then  

   

  This is not an elementary function. 
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IV) Evaluate    ,  where a is constant,   

      

  Let y = x – r   then  

   

  This is not an elementary function. 

 Properties of Riemann-Liouville Fractional integral: 

Theorem 3.3.1: Suppose that α > 0, x > 0, α, a, x 𝜖 R then Riemann-Liouville Fractional integral

   for α = 0 satisfies        

Proof:    It is by convention   , identity function 

  

Theorem 3.3.2: Suppose that α > 0, x > 0, α, a, x 𝜖 R then Riemann-Liouville Fractional integral 

  satisfies linearity i.e.             

  ,           ,  𝜖 C                             (3.3.8) 

Proof: Consider  

   

         

                                 

   

    

Theorem 3.3.3:  Suppose that α > 0, 𝛽  > 0, x > 0, α, x 𝜖 R f(x) is continuous for x ≥ 0 then 

Riemann-Liouville Fractional integral satisfies exponent law i.e. following  equality holds 

  

                     (3.3.9) 

Proof: consider by definition 
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             (3.3.10) 

 Using Dirichlet’s formula, where B is the beta function.  

Similarly 

                       (3.3.11) 

 And  

                                                   (3.3.12) 

From equations (3.3.10), (3.3.11) and (3.3.12),  law of exponent 32.3.9) satisfied by Riemann-

Liouville Fractional integral. 

 

Riemann-Liouville Fractional derivative: 

In general Riemann-Liouville Fractional derivative of order α > 0 and n-1 < α < n, n 𝜖 N of the 

function f(x) is as defined in equation (3.8.4) as 

                                (3.3.13)  

   If 0 < α < 1, we obtain 

                                                      

Let α > 0 and n-1 < α < n, n 𝜖 N, and a < x < b, Left hand and Right hand Riemann-Liouville 

Fractional Derivative is defined as 

                               (3.3.14)               

                               (3.3.15) 

 respectively. 

Examples: 

I) Evaluate    , where  , μ ≥ 0. 

Let 0 < α < 1 therefore n = 1 
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                                     (3.3.16) 

           Note: For the result (3.3.16) we see some particular examples 

i) For α = α and  , where C is constant 

                                                       (3.3.16.1) 

ii) For α = 1/2 and   

  

iii) For α = 3/2 and   

  

iv) For α = 1/2 and   

  

v) For α = 3/2 and   

  

vi) For α = 1/2 and   

  

vii) For α = 3/2 and   

            

Some properties of Riemann-Liouville fractional Derivative: 

Theorem 3.3.4: Suppose that x > 0, α, a, x 𝜖 R then Riemann-Liouville Fractional derivative

   for α = 0 satisfies                                    

   

Proof:    It is by convention   , identity function 
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Theorem 3.3.5: Suppose that α > 0, x > 0, α, a, x 𝜖 R, n-1 < α < n, n 𝜖 N λ, μ 𝜖 C then Riemann-

Liouville Fractional derivative   satisfies linearity i.e.   

  ,                 (3.3.8) 

 Where λ and μ are constants. 

Proof: Consider  

   

   

   

                   

               

  

Hence Riemann Liouville fractional derivative satisfies Linearity property. 

Theorem 3.3.5: Suppose that α > 0, x > 0, α, a, x 𝜖 R, n-1 < α < n, n, m 𝜖 N then Riemann-

Liouville Fractional derivative   satisfies  

  

Proof: Consider  

           

  

  

  

  

    

Note:  

Figure (3.8.1) show graph of Riemann-Liouville fractional integral of function 

 where f(x) = y = x for different values of α between 0 and 2. 
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Figure 3.8.1: Riemann-Liouville integral Iα of y = x for different values of α. 

Figure (3.8.2) show graph of Riemann-Liouville fractional integral of function 

 where f(x) = y = e-x for different values of α between 0 and 2. Here we 

observe that there is a discontinuous position of function at x= 0 between first order integral and 

arbitrary order between 0 < α < 1. 

 

Figure 3.8.2: Riemann-Liouville integral Iα of y = e-x for different values of α. 
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3.4 Caputo fractional derivative: 

Italian mathematician M Caputo introduce Caputo fractional differential operator of order α > 0, 

m-1 < α  < m for m 𝜖 N in 1967. The main advantage of using the Caputo definition is that it is 

easily interpreted initial conditions and it is also bounded, meaning that the derivative of a 

constant is equal to 0. The definition is as follows:  

                 (3.4.1)  

Let α > 0 and m-1 < α < m, m 𝜖 N, and a < x < b, Left hand and Right hand  Caputo Fractional 

derivative is defined as                                                          

                (3.4.2) 

                          

                (3.4.3) 

Examples: 

I) Evaluate ,  for α = ½ , a = 0 and f(x) = x 

  

  

  

  

  

II) Evaluate ,  for α = ½ , and f(x) = C, constant. 

   

  

  

Some properties of Caputo fractional Derivative:   
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I) Theorem 3.4.1: Let f(x) be a function and m-1 < α < m, α 𝜖 R such that its Caputo 

derivative  exists, then prove 

                                             

  Proof:   By Convention      . 

II) Theorem 3.4.2: Let f(x) & g(x) be any functions and m-1 < α  < m, α 𝜖 R, λ 𝜖 C such that 

its Caputo derivative  and  exists, then prove 

  

 

    Proof:                 by (3.4.1) 

  

  

  

 

III) Theorem 3.4.3: Let f(x)  be any functions and m-1 < α  < m, α 𝜖 R, m, n 𝜖 N such that its 

Caputo derivative   exists, then prove 

               

     Proof:  use [3, 6] 

   Note:    

 

    Figure (3.4.1) shows graph of Caputo fractional derivative of function  

where f(x) = y = x for different values of α. Here we observe that for α = 0, 1 and all α > 1graph 

is in accordance with as an classical derivative. 
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Figure 3.4.1: Caputo derivative   of y = x for different values of α. 

Figure (3.4.2) show graph of Caputo fractional derivative of function  where 

f(x) = y = e-x for different values of α between 0 and 1. These are mirror image of graphs in 

figure (2.8.2). 

 

Figure 3.4.2: Caputo derivative   of y = e-x for different values of α. 
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3.5 Comparative Study of Riemann-Liouville and Caputo fractional derivative: 

 Riemann-Liouville fractional derivative and Caputo fractional derivative are represented 

by equations (3.3.13) and (3.4.1) respectively. From these definitions following results holds. 

I) Theorem  3.5.1: Let f(x) be a function and m-1 < α < m, α 𝜖 R such that its Caputo 

derivative  exists, then prove 

                                                                     (3.5.1) 

          Proof:               

                

           

II) Theorem  3.5.2: Let f(x) be a function and m-1 < α < m, α 𝜖 R such that its Riemann-

Liouville derivative  exists, then prove 

                                    (3.5.2) 

            Proof:  

  

             by (2.3.5) 

III) Theorem  3.5.3: Let f(x) be a function defined on (0, ∞) and m-1 < α < 

m, α 𝜖 R then following relation holds between Riemann-Liouville fractional derivative and 

Caputo fractional derivative 

               (3.5.3) 

                       Proof:  By Taylor series expansion f(x) about point 0 can be written as 

    

                                                  (3.5.4) 

   

  

                                                               (3.5.5) 
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  Applying RL derivative to equation (3.5.4) we have 

   

   

                                       by (3.5.5) 

   

    

Hence,  

Note: From equation (2.5.3),  i.e. Riemann-Liouville and Caputo 

derivatives do not coincide. 

 

3.6 Other Approaches of fractional calculus: 

FC has built-up several applications in countless areas of scientific knowledge. As a 

consequence, distinctive approaches to solve problems involving the derivative and integral were 

proposed. We do not talk about on the pros and cons of each approach and does not support that 

is to be differentiated or integrated. As like the above approaches which we discussed in previous 

part of this chapter which are Grünwald–Letnikov, Riemann-Liouville and Caputo for fractional 

integral and derivative, there are many approaches we can find in the literature. Some of these 

definitions for fractional integrals and fractional derivatives are  

Fractional Integrals: Wely integral, Kober Integral, Hadamard Integral, Chen integral, Hilfer 

integral, Yang integral, Cossar integral, Erdelyi integral, Grünwald integral, Riemann integral, 

Letnikov integral, Liouville integrals, and many more. 

 Fractional Derivatives: Wely derivative, Hadamard derivative, Chen derivative, Marchaud 

derivative, Jumarie derivative, Cossar derivative, Yang  derivative, Grünwald derivative, 

Riemann derivative, Letnikov derivative, Liouville derivative, and many more. 

 

3.7 Conclusion: 

In this chapter we studied mostly used fractional calculus operator right from their origin to their 

applications. From this study we can conclude that generalization of traditional calculus is an 
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attractive topic for research, but due to its complexity, inability to satisfy all basic properties 

concerned with algebraic point of view, field is not developed as per requirement. There are 

numerous definitions available for fractional integral as well as for fractional derivative. Using 

these definitions researchers in this field developing it theoretically and via applicability in 

majority of fields in mathematics,  science, engineering and other fields of education. 
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CHAPTER -IV 

EXTENDED TRANSFORMS AND FRACTIONAL DIFFERENTIAL EQUATIONS 

 

 

4.1 Introduction: 

Extended integral transform means an ordinary integral transform used to assess problems in 

fractional calculus. In evaluating problems in fractional calculus, fractional differential equations 

extended integral transform plays an imperative responsibility. Basic properties of these 

extended integral transform studied we initially overlook on ordinary integral transform. 

 

4.2 Integral Transform: 

An integral transform is a particular type of mathematical operator. To each integral transform 

there is its associated inverse integral transform. This inverse integral transform associated to 

respective integral transform since, integral transform maps its original domain into another 

domain where it is solved very easily than in its original domain than again mapped to original 

domain by using inverse integral transform. There are numerous integral transform in study.  

The methods of Integral transforms have their genesis in nineteenth century work of Joseph 

Fourier and Oliver Heaviside. The fundamental idea is to represent a function f(x) in terms of a 

transform F(s) is  

  Integral Transform of the function f (x) for t1 ≤ x≤ t2 is defined as 

 

Where K is the function of two variables t and x called kernel of integral transform. 

Choice of kernel function K of two variables is different for different integral transform. 

              Inverse integral transform is of the form 

                                        

 

             Where,     is the kernel of inverse integral transform and is the inverse of 

kernel K (t, x). 
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A)  Laplace Transform: 

 Laplace Transform is very useful in solving differential equations especially when initial values 

are zero. The Laplace Transform of a function f(x) which is piecewise smooth over every finite 

interval [0, ∞) and of exponential order 𝛾 i.e. there exist constants M > 0 and X > 0 such that 

|f(x)| ≤ M   for all x > X, then the Laplace transform defined for all real number x ≥ 0 is the 

function  given by 

                                                          (4.2.1) 

Inverse Laplace transform of F(s) i.e. f (x) is given by 

               F(s) ds, c=Re(s) > c0,                     (4.2.2) 

where c0 lies in right half plane of the absolute convergence of Laplace integral (4.2.1) 

B) Some basic properties of Laplace Transform: 

Theorem 4.3.1: Let f(x) and g(x) be two functions such that there Laplace transform F(s) and 

G(s) respectively exist, then following equations holds. 

i) {a f(x)}=a {f(x)}   ;   where a is constant. 

ii) {a f(x) + b g(x)}= a {f(x)} + b {g(x)}   ;  Linearity 

iii) If {f(x)}=  then £{f(ax)} =   ; change of scale 

iv) Convolution property : If F(s) and G(s) are the Laplace Transform of f(x) and g(x) 

respectively, then 

       F(x) * g(x); s} = F(s) G(s) =  , 

Where convolution is given by 

                f * g = . 

v) The Laplace transform of the n-th (n 𝜖 N) derivative of f(x) is given by 

                                     

                                                      

  Proof: All proof are easily obtained from (4.2.1). 

C) Mellin Transform: 

Mellin Transform is closely related with Laplace transform and Fourier transform. The Mellin 

integral transform was employed in connection with the Fractional Calculus special functions, 

like the Mittag-Leffler and the Wright functions and their generalizations. These functions are 
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scrupulous cases of the Fox H-function that can be interpreted as an inverse Mellin transform. 

Hjalmar Mellin (1854–1933) gave his name to the Mellin transform of a function f(x) defined 

over the positive real’s, the complex function M [f (x); s].  Mellin Transform is the multiplicative 

version of two sided Laplace Transform. 

The mellin Transform of a function f(x) is defined as 

                   f(x)} =F(s) =                                         (4.2.3)   

Where  is the the Mellin transform operator and s is the Mellin transform variable which is 

complex number. 

   Inverse mellin transform is defined as 

                                         (4.2.4) 

                   Where  is the inverse Mellin transform operator, and integral is understood in 

the good judgment of Cauchy principal value. 

D) Some properties of Mellin Transform: 

Theorem 4.2.2: Let f(x) and g(x) be two functions such that there Millin transform F(s) and G(s) 

respectively exist, then following equations holds 

i) . {a f(x)}=a f(x)}   ;   where a is constant 

ii) {a f(x) + b g(x)}= a {f(x)} + b {g(x)}   ;  Linearity 

iii) If {f(x)}=  then {f(ax)} =    ; change of scale 

iv) Convolution property : If F(s) and G(s) are the Mellin Transform of f(x) and g(x) 

respectively, then 

         f(x) * g(x); s} = F(s) G(s)=  

Where convolution is given by 

                f * g = . 

v) The Mellin transform of the n-th (n 𝜖 N) derivative of f(x) is given by 

  

vi) The Mellin transform of product of xn and the n-th (n 𝜖 N) derivative of f(x) is given by 

     

vii)  
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                     Proof: All proof are easily obtained from (4.2.3) see [12, 13]. 

 

4.3 Extended Transform (Integral transform of some fractional approaches): 

I)  Laplace Transform of the Riemann-Liouville Fractional Integral: 

 

Theorem 4.3.1: Suppose α > 0 and F(s) is the Laplace transform of f(x), then Laplace transform 

of the Riemann-Liouville Fractional Integral  

                                  (4.3.1) 

is given by 

                                 (4.3.2) 

 Proof: To obtain Laplace transform of (4.3.1)  

Following table gives Laplace transform of some function and their fractional integrals: 

f(x) F(s)= £{f(x)}  £  

   
 

 
 

 
 

 
 

 
 

Cos(ax) 
   

Sin(ax) 
   

 

Table 4.2.1:  Fractional Laplace transform of some functions. 

 

II) Laplace Transform of the Riemann-Liouville Fractional Derivative: 

Theorem 4.3.1: Suppose α > 0 and F(s) is the Laplace transform of f(x), then Laplace transform 

of the Riemann-Liouville Fractional differential operator 

                                     (4.3.3) 

 Is given by          
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                           (4.3.4) 

Proof: To obtain Laplace transform of (4.3.3) see [11, 12].           

 

III)     Laplace Transform of the Caputo Fractional Derivative: 

Theorem 4.3.1: Suppose α > 0 and F(s) is the Laplace transform of f(x), then     Laplace 

transform of the The Caputo Fractional Differential operator is given   by 

                                            (4.3.5) 

 is given by 

                       

                       (4.3.6) 

Proof: To obtain Laplace transform of (4.3.5) we have 

  

                        Let       

  

  

                                                      (4.3.7) 

    Where    given by from (4.3.4) 

                               (4.3.8) 

 Using (4.3.8), equation (4.3.7) becomes 

   

  Hence,     

IV) Mellin Transform of the Riemann-Liouville  Fractional Integral: 

           Mellin transform of Riemann-Liouville fractional integral operator is          given by 

                     (5.5.4) 

V) Mellin Transform of the Riemann-Liouville and Caputo Fractional Derivative: 

       Mellin transform of Riemann-Liouville and Caputo fractional derivative operator is given by 

                     )} = F(s) =  F(s - α)                          (5.5.5) 

Theorem 5.5.2: Let f be Mellin transformable function for all x ≥ 0, and 0 ≤ n-1 ≤ α ≤ n  then 

following properties holds. 
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i)   

ii)  ,  Re(s) > - Re(k) 

iii)  

Proof: i) Here is the Caputo fractional derivative of order α and  is the Riemann-Liouville 

fractional integral. We know a result  

  

  Using this result 

  

ii)   Here is the Caputo fractional derivative of order α and  is the Riemann-Liouville 

fractional integral. We know a result  

       

 Using this result, we have 

  

  

 ,   Re(s) > - Re(k) 

iii) Consider 

  

 

  

                                    by (5.5.4) 

 

4.4 Fractional Differential Equations: 

The laws of the Natural and Physical world are usually modeled in mathematics in the form of 

differential equations. Fractional Calculus is the generalization of traditional calculus therefore 

fractional differential equation gives more energy for modeling real world problems than that of 

differential equations. There is no standard algorithm to solve fractional differential equations. 

Solution of the fractional differential equations and its interpretation is a rising field of Applied 

Mathematics. Most of the fractional differential equations do not have exact analytic solutions 
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therefore numerical techniques and approximation methods are used. Here we study some of 

these methods/ techniques and tried to analyze them. 

Ordinary differential calculus and Fractional differential calculus has lot of differences between 

them such as Ordinary differential calculus (ODC) initiated at first then fractional differential 

calculus (FDC), FDC is the generalization of ODC but not vice-versa, development of ODC was 

very fast where as development of FDC was very slow, ODC easy to interpret (most of the time) 

geometrically and physically where as FDC very hard to interpret geometrically as well as 

physically, ODC termed as local and FDC termed as non-local, ODC models ideal behavior 

where as FDC models real behavior etc.  

In last two to three decades we find numerous applications of Fractional differential equations 

(FDE) in all most all fields of science and engineering such as Visco-elasticity, Control theory, 

Biology, physics, chemical sciences, engineering, electric circuits, bioengineering etc. Fractional 

differential equations are used to model most of physical phenomenon hence fraction differential 

equation are the solutions to real world problems. Several methods are used to solve fractional 

differential equations. Some of them are the Adomian decomposition method, variational 

iteration method, Homotopy Analysis method, integral transform method, the iteration method, 

the operational method and new iterative method (Daftardar-Gejji and Jafri (2006)) etc. 

Fractional differential equations have gained considerable significance due to their frequent form 

applications in fluid flow, dynamical processes in self similar and porous structures, diffusive 

transport akin to diffusion, electrical networks, probability and statistics, control theory of 

dynamical systems, optics, viscoelasticity, electrochemistry of corrosion, chemical physics, and 

signal processing, and so on. These applications in interdisciplinary sciences motivate us to try to 

find out the analytic or numerical solutions for the fractional differential equations. But for most 

ones it is difficult to find out or even have exact solutions. Thus, necessarily, the numerical 

techniques are applied to the fractional differential equations. Now, many effective methods for 

solving fractional differential equations have been presented, such as nonlinear functional 

analysis method including monotone iterative technique, topological degree theory, and fixed 

point theorems. Also, numerical solutions are obtained by the following methods: random walk, 

matrix approach, the Adomian decomposition method and variational iteration method, HAM.  

In opposite to differential equations of integer order, in which derivatives depend only on the 

local behaviour of the function, fractional differential equations accumulate the whole 
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information of the function in a weighted form. This is so called memory effect and has many 

applications in physics, chemistry, engineering, etc. For that reason we need a method for 

solving such equations which will be effective, easy-to-use and applied for the equations in 

general form. However, known methods used for solution of the equations have more 

disadvantages. Analytical methods, described in detail in, do not work in the case of arbitrary 

real order. Another analytical method, which uses the multivariate Mittag-Leffler function and 

generalizes the previous results, can be used only for linear type of equations. On the other hand, 

for specific differential equations with oscillating and periodic solution there are some specific 

numerical methods. Other numerical methods allow solution of the equations of arbitrary real 

order but they work properly only for relatively simple form of fractional equations. 

 

4.5 Some Approaches for solving FDE: 

Consider non-linear functional equation 

                          u = f + L(u) + N(u)                                       (4.5.1) 

where L and N are linear and nonlinear functions of u and f is a source function.  This equation 

represents ordinary differential equations (ODE), integral equations, partial differential equations 

(PDE), differential equations involving fractional order, and so on. Various methods such as 

Green’s function method, Laplace transform method and Fourier transform method, have been 

used to solve linear equations. For solving non-linear equations however, one has the option to 

decomposition, numerical or iterative methods.  

        Among the several numbers of available approaches for solving fractional differential 

equation here we review following three mostly used approaches.  

I)  Adomian Decomposition Method:  

The Adomian decomposition method is a powerful technique used to solve nonlinear functional 

equation in particular fractional differential equations. This method provides efficient algorithms 

for numeric simulation and analytic approximation of solution to considered fractional 

differential equations. For finding analytic solution to nonlinear functional equations Adomian 

decomposition method is an accurate, convenient and effective. In Adomian decomposition 

method given problem/equation split into linear and nonlinear part, then inverting highest order 

derivative operator contained in the linear operator in both sides. For detail understanding 

consider a general nonlinear equation in the form 
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 Lu + Ru + Nu = g 

  Where L is the highest order derivative which is to be invertible  easily, R is the linear 

differential operator having order less then L, Nu represent the nonlinear terms and g is the 

source term. Applying  to both sides, we have 

 u = f(x) –  (Ru) –   (Nu) 

 where f(x) = g(x) with given conditions.  

                  For nonlinear differential  equations Nu = F(u) and  

                  F(u) =  , infinite series of Adomian Polynomials. 

   Where  is called Adomian polynomial of , , ……      defined by 

  𝜆=0   , n= 0, 1, 2, ….. 

   u = , is the approximate solution. 

Adomian decomposition method (ADM) has proved to be a useful tool for solving functional 

equations, since it offers certain advantages over numerical methods. Adomian’s technique is 

simple in principle but involves tedious calculations of Adomian polynomials.  

II) Variational Iteration Method: 

Variational iteration method is a nice method used to approximate analytical solutions of both 

linear and nonlinear fractional differential equations. Variational iteration method first 

successfully applied by Ji-Huan He to the fractional differential equations. Large number of 

fractional differential equations does not have exact analytic solutions, so approximation by 

variational iteration method is an best option/deal. Most authors found that the shortcomings 

arising in the Adomian decomposing method can be completely eliminated by the variational 

iteration method. For example, Abbasbandy applied the variational iteration method to 

Riemann–Liouville’s fractional derivatives, Draganescu and his colleagues to nonlinear vibration 

with fractional damping, Momani and his colleagues applied the method to fluid mechanics 

where the fractional derivative was successfully applied. 

General form of variational iteration method 

Lu(x)  + N(x) = g(x) 

Where L is the linear operator and N is the nonlinear operator and g(x) is a known analytic 

function. 
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III) Homotopy Analysis Method: 

S.J. Liao introduced Homotopy Analysis Method to obtain solution to linear/non-linear 

differential equations. Homotopy analysis method is a general approximate analytic approach 

used to obtain series solution of nonlinear equations of different type. This method is applied to 

various nonlinear problems in science and engineering by number of researchers. 

In homotopy analysis approach we construct a continuous mapping of an initial guessed 

approximation to the exact solution of the equation which is in consideration. Continuous 

mapping constructed by choosing proper auxiliary linear operator and auxiliary parameter is used 

to ensure the convergence of the solution series. 

  

4.6 Analysis of Methods: 

Above three methods applied to fractional differential equation of the type  given by 

 

 

 

         g(t, )=0 

Subject to the initial conditions 

                            

Where  is Caputo differential operator as given in equation (4). 

This fractional differential equation is converted into the required format of corresponding 

method and then evaluated to get solution.  

A numerical example solved by these methods and data is collected in table4.5.1, table4.5.2, 

table 4.5.3 for different value of   

      , 

 

With initial condition x(0)=1, y(0)=0. 

This differential has exact solution  

 when   
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t 
 

   

0 1.00000000 1.00000000 1.00000000 

0.2 0.75450966 0.75450964 0.75450964 

0.4 0.85249503 0.85249505 0.85249504 

0.6 1.02420516 1.02420516 1.02420516 

0.8 1.22732911 1.22732911 1.22732910 

1.0 1.43275523 1.43275529 1.43275528 

                       Table 4.5.1: Numerical solution to example for   

t 
 

   

0 1.00000000 1.00000000 1.00000000 

0.2 0.80166961 0.80166972 0.80166972 

0.4 0.82508732 0.82508712 0.82508712 

0.6 0.94545818 0.94545815 0.94545815 

0.8 1.12295920 1.12295946 1.12295946 

1.0 1.32697566 1.32697590 1.32697590 

                       Table 4.5.2: Numerical solution to example for   

t 
 

    

0 1.00000000 1.00000000 1.00000000 1.00000000 

0.2 0.85846462 0.85846462 0.85846462 0.85846462 

0.4 0.82608738 0.82608738 0.82608738 0.82608739 

0.6 0.88759712 0.88759712 0.88759712 0.88759712 

0.8 1.02321384 1.02321384 1.02321384 1.02321384 

1.0 1.20935045 1.20935045 1.20935045 1.20935043 

Table 4.5.3: Numerical solution to example for   
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4.6 Conclusion: 

Applications of Fractional calculus are found in almost all sciences. Fractional Calculus is the 

topic of today’s researchers. Fractional calculus is expressed as a solution to real world 

problems. Integral transform are useful in finding solution of differential equations. Solving 

fractional differential equation is very monotonous mission. We studied extended integral 

transform with their properties particularly Laplace transform and Mellin transform of Riemann-

Liouville integral operator, Riemann-Liouville differential operator and Caputo differential 

operator. 

 All of these three methods, Adomian decomposition method, Variational iteration method and 

Homotopy analysis method gives approximately same solution. Adomian decomposition method 

and variational iteration method are simple and very easy to apply then homotopy iteration 

method. 
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Chapter -V 

Applications of Fractional Calculus 

 

 

5.1 Introduction: 

In recent year Mathematical applications using fractional calculus are increases speedily, in this 

section we see a quantity of real life mathematical modeling using fractional calculus. Fractional 

Calculus has engrossed concentration of many researchers, since fractional Calculus models are 

extra realistic and matter-of-fact than the classical integer   order models. Therefore, any 

dynamical process modeled through fractional order differential equations has a reminiscence or 

memory effect.  

 

5.2 Mathematical modeling using fractional calculus: 

     Controller: 

PID controller is also called as three term controller which is widely used in industrial control 

system. PID controller incessantly calculates an error value e(x) as the difference between a 

preferred setpoint (sp) and a calculated process variable (pv). It was used for automatic process 

control in the manufacturing industry. In today’s era concept of PID is used universally where 

there is requirement of accurate and optimized automatic control. 

The concept of a fractional order  is proposed in a paper written by Igor Podlubny in 1999 

[1], where the integrator and differentiator are of a fractional order. A fractional order transfer 

function is provided as 

    𝜆, 𝜇 > 0 

Here 𝜆 is the order of the integrator, 𝜇 is the order of differentiator,  is the transfer of 

controller, U(s) is the controller’s output and E(s) is an error. If 𝜆 =1 and 𝜇 = 1 equation becomes 

traditional P I D controller equation If 𝜆 =1 and 𝜇 = 0, equation converts to a P I controller 

equation. If 𝜆 =0 and 𝜇 = 1 equation converts to a P D controller equation. 

In the time domain, it becomes an open-loop system is described by 
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Here w(t) is the input , y(t) is output of the system,  (k= 0,1,2….n) arbitrary real number and 

 (k= 0,1,2….n) arbitrary constants. Effectiveness of this controller can be analyzes by an 

example of P  controller. The transfer functions and time domain fractional order differential 

equation are  

 

 

With initial condition y(0) = 0, y’(0) = 0, y’’(0) = 0. 

Following figure shows the effectiveness of the controllers. 

 

Figure 1 is the comparison of conventional P D controller (thick line) and fractional P  

controller ( thin line). 

 

Memory for propagation of computer viruses under human intervention:  

Internet is now a necessary part of human life, without internet day today’s life crumple. Use of 

internet means use of Computers, Laptops, mobiles etc. Keeping computers, laptops, Mobile etc 
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in good/working condition is an important task.  Most of the work such as banking, paying bills, 

purchasing some product online, online recharging of   mobile, TV, booking movie ticket, etc 

requires internet. While downloading some file or transferring file from infected USB to 

computers, viruses may insert in the system  and they may create problems to system. Computer 

viruses are malicious codes that can replicate themselves and spread among computers in 

network. These viruses create problems in proper working of computer system which result in 

disturbing routine working. Large number of companies, organizations etc are suffered, suffering 

and may be suffered from such viruses. ‘My Doom’ is the most devastating computer virus 

which caused over $38 billion on damages.  

Human intervention plays a significant role in preventing the breakout of computer viruse. Here 

we study fractional mathematical model with memory propagation of computer viruses under 

human intervention. In this fractional model Caputo fractional derivative, Riemann-Liouville 

fractional derivative and Grunwald-Letnikov fractional derivatives are proposed. 

 This model is based on integer order model. Computers under consideration are categorized into 

three populations:  Infected computers I(t) ; susceptible (virus free) computers S(t) and 

Recovered computers R(t) which are virus free computers but having some immunity. These 

variables used to develop model and virus-free equilibrium point and its stability, existence of 

uniformly stable solution and by using predicator corrector method, numerical results obtained.   

 

Smoking dynamics using fractional differential equations: 

We are all well knows that lot of health problems occurs due to tobacco smoking. Some harmful 

diseases due to smoking are cancer, stomach ulcer, high blood pressure, lung disease, heart 

disease etc.  To reduce or to keep control on the strength of smokers all over the world, different 

mathematical models are proposed and also working-on to propose by some mathematicians. 

First simple mathematical model was proposed by C. Castillo-Garsow et.al. for giving up 

smoking. On considering control variables in the form of anti-smoking gum, anti-nicotine 

medicine/drugs, education campaign, eradication of smoking in a community, optimal control 

theory was proposed in. A novel model was proposed by assuming variables for mild smokers 

and chain smoker classes by Sharmi and Gumel. Smoking behavior under influence of education 

program and individuals determination to quit smoking was proposed. 
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Considering the Caputo- Fabrizio-Caputo fractional derivative, the authors in  presented a new 

fractional giving up smoking model, the existence and uniqueness of the solution were discussed 

by the fixed point postulate. Zeb in proposed a fractional smoking dynamic model considering 

adolescent nicotine dependence. In the authors studied the giving up smoking dynamics using a 

fractional order model; approximate solutions via Laplace Adomian decomposition method were 

obtained. The multi-step generalized differential transform method was employed in  to obtain 

accurate solutions to a giving up smoking model of fractional order. The giving up smoking 

dynamics models have been extended to the scope of fractional derivatives using power law and 

exponential decay law. 

Here we study a mathematical model using fractional calculus i.e. fractional differential equation 

with local and non-local kernel for smoking dynamics which was proposed by V.F.Morals-

Delgado et.al.   In this model analytical solution obtained using Modified Homotopy Analysis 

Transform Method (MHATM) with two wisdom, one using Liouville – Caputo fractional 

derivative and second Atangana-Baleanu-Caputo fractional derivative. Also using iterative 

method through Laplace transform, special solution were obtained. 

 Liouville Caputo Fractional derivative is given by 

    

Where  denote the Euler’s gamma function. 

      Laplace transform of Liouville-Caputo derivative is given by 

          n-1 < α < n. 

Atangana-Baleanu-Caputo (ABC) [18] fractional derivative is given by 

   n-1 < α(t) ≤ n. 

 Where B(α) denote a normalize function and  denote Mittag-Leffler function. 

                   Laplace transform of Atangana-Baleanu-Caputo (ABC) fractional derivative is given 

by 

 . 

  Mathematical model developed by author’s contains power law and fractional 

differentiation involving generalized Mittag Leffler functionas karnel due to non-locality of the 
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model. Fixed point theorem and Picard-Lindelof approach used to put remarks on existence and 

uniqueness of system of solutions. 

 

Diffusion Equation:   

Diffusion equation is an interesting application of fractional calculus. The study of thermal flux 

on a given surface is important due to its influence on material wear and performance. In 

addition once the thermal flux is known, the temperature can be obtained. The brake disks are 

treated as semi-infinite bodies and assumed to have a constant temperature distribution. 

Agrawal (2004) published a paper which analyzes the effectiveness of using fractional order 

derivatives to obtain the heat flux at a given point. Traditionally this was achieved by performing 

a transient analysis of two nearby points. His motive was the thermal study of disk brakes. The 

following diffusion equations govern the thermal distribution of the body. 

                            

 Where T(x, t) is the temperature at point x and time t, K is the thermal conductivity,   ρ 

the mass density and c the specific heat of the disk material. After non-dimensional zing and 

applying Laplace Transform it is converted in fractional partial differential equation given by 

                             

   Using this fractional equation heat flux Q(t) and temperature at that point obtained. 

Lot of Mathematicians work on diffusion equation some of them, Kulish gives more information 

on thermal flux analysis with fractional order derivatives in his paper, Lokenath Debnath  also 

gives more detailed applications of fractional calculus relating to the diffusion equation in his 

litreture.  

 

Resistance, Inductance and Capacitance Circuit:   

RLC electrical circuit with a capacitor and an inductor are   connected in parallel and this set is 

connected in series with a resistor and voltage. The capacitance C, the inductance L and the 

resistor R are consider positive constants and 𝜙(x) is the ramp function, consider the 𝜙(x) is 

Heaviside function. 
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The equations connected with a three elements of RLC electrical circuit are 

     The Voltage drop across resistor 

  

     The Voltage drop across inductor 

  

    The Voltage drop across capacitor 

  

           Where I(x) is the current in circuit. 

Applying the Kirchhoff’s voltage law and the equations associated with the three elements, we 

can write the non-homogeneous second order ordinary differential equation 

                (1) 

Similarly we obtain other non-homogeneous second order ordinary differential equations 

associated with the current on the capaciter, 

                       (2) 

We consider the initial condition  = 0 and the solution can be establish in provisions of an 

exponential function. Fractional integro-differential equations of (2) is given by 

         (3)    

With 0 < α ≤ 1, and the fractional derivative is used in the Caputo form, where 𝜙(x) is the 

Heaviside function. We also consider  , i.e., the initial current on the capacitor is zero. 

We note that this equation is a achievable generalization of the classical integro-differential 

equation associated with the RLC electrical circuit, when α = 1 . 

To solve this fractional integro-differential equation, we introduce the Laplace integral 

transform, defined by         

                                        (4) 

            Equation (2.2.3) for R(s) > 0 becomes,  

                                                                  (5) 

                                                            (6) 
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   Where a= R/L and b=1/L with a, b > 0 

To get solution to (3) taking Laplace inverse of (5) 

                                                   (7)  

  

          Valid when  ,   hence equation (2.2.7) will be 

  

 

  Where  is Mittag-Leffler function of three parameter. 

If instead of considering  Heaviside function, if we consider it as parabolic function, the 

solution becomes 

 

 

Conclusion: 

 Concepts of fractional calculus are very hard to understand that’s why though the 

fractional calculus was as old as traditional calculus. It was not developed, discussed and applied 

for long time. In recent year, last two to three decades it is the topic of most of the researchers. 

Fractional calculus is an extraordinary and outstanding mathematical topic since it is applied to 

situations where existing theory fails to apply properly. Fractional calculus is applied to all most 

all sciences and real life problems as discussed above. So, we may say “Fractional Calculus is 

the mathematical solution to real life problems”.       
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